Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(3): 1051-1060, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239688

RESUMO

Organic small-molecule compounds have become promising cathode materials for high-performance lithium-ion batteries (LIBs) due to their high theoretical capacity, efficient utilization of active sites, low cost, and sustainability. However, severe dissolution and poor electronic conductivity limit their further practical applications. Herein, we have synthesized an insoluble organic small molecule, ferrocenyl-3-(λ1-azazyl) pyrazinyl [2,3-f] [1,10] phenanthrolino-2-amine (FCPD), by grafting ferrocene onto pyrazino[2,3-f] [1,10] phenanthroline-2,3-diamine (PPD). The combination of ferrocene (p-type Fe2+ moiety) and PPD (n-type C[double bond, length as m-dash]N groups) in a bipolar manner endows the target FCPD cathode with an increased theoretical capacity and a wide voltage window. The highly conjugated π-π aromatic skeleton inside enhances FCPD's electron delocalization and promotes strong interaction between FCPD units. Additionally, the mesoporous structure within the FCPD can provide numerous electroactive sites, contact area, and ion diffusion channels. Benefiting from the bipolar feature, aromatic, and mesoporous structure, the FCPD cathode demonstrates a large capacity of 250 mA h g-1 at 0.1 A g-1, a long lifespan of 1000 cycles and a high-rate capability of 151 mA h g-1 at 5 A g-1 along with a wide voltage window (1.2-3.8 V). Additionally, in situ synchrotron FT-IR and ex situ XPS reveal its dual ion storage mechanism in depth. Our findings provide essential insights into exploring the molecular design of advanced organic small molecules.

2.
ACS Nano ; 17(23): 24227-24241, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992278

RESUMO

Developing advanced high voltage lithium-metal batteries (LMBs) with superior stability and intrinsic safety is of great significance for practical applications. However, the easy flammability of conventional carbonate solvents and inferior compatibility of commercial electrolytes for both highly reactive Li anodes and high-voltage cathodes severely hinder the implementation process. Hence, we rationally designed an intrinsically nonflammable and low-cost phosphate electrolyte toward stable high-voltage LMBs by bidirectionally modulating the interphases. Benefiting from the synergistic regulation of LiNO3 and DME dual-additives in the 1.5 M LiTFSI/Triethyl phosphate electrolyte, thin, dense and robust electrodes/electrolyte interphases were well constructed simultaneously on the surfaces of Li anode and Ni-rich cathode, dramatically improving the stability and compatibility between electrodes and electrolyte. Consequently, boosted kinetic and high Coulombic efficiency of 98.6% for Li metal plating/stripping over 400 cycles and superior cycling stability of exceeding 4,000 h in Li symmetric cell is achieved. More importantly, the Li∥LiNi0.6Mn0.2Co0.2O2 cell assembled with a thin Li anode and high mass-loading cathode at a high cutoff voltage of 4.6 V retains a 98.4% capacity retention after 500 cycles at 1C. This work affords a promising strategy to develop nonflammable electrolytes enabling the high safety, good cyclability, and low cost of high-energy LMBs.

3.
Small ; 19(49): e2303784, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37612805

RESUMO

Li-S batteries are regarded as promising devices for energy storage systems owing to high energy density, low cost, and environmental friendliness. However, challenges of polysulfides shuttling in sulfur cathode and dendrite growth of lithium anode severely hinder the practical application. Developing advanced skeletons simultaneously regulating the cathode and anode is significant and challenging. Hence, a novel and scalable strategy combining spray drying and topological nitriding is proposed, and hierarchically assembled rGO hollow microspheres encapsulated highly porous nanospheres consisted of ultrafine Nb4 N5 -Nb2 O5 or Nb4 N5 nanoparticles as multifunctional skeletons for S and Li are designed. In such unique architecture, a 3D highly porous structure provides abundant void space for loading of S and Li, and accommodates volume change during cycling. Moreover, Nb4 N5 -Nb2 O5 heterostructured interface promotes adsorption-conversion process of polysulfides, while strong lithophilic Nb4 N5 induces the selective infiltration of Li into the void of the skeleton and regulates the uniform deposition and growth. More interestingly, in situ generated Li3 N@Nb ion/electron conducting interfaces induced by the reaction of Nb4 N5 and Li reduce the nucleation overpotential and induce selective deposition of Li into the cavity. Consequently, the Li-S full cell exhibits superior cycling stability and impressive rate performance with a low capacity ratio of negative/positive.

4.
Nanoscale ; 11(29): 14016-14023, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31309960

RESUMO

Exploring highly effective electrocatalysts with heterostructures is significant for sustainable hydrogen production by the hydrogen evolution reaction (HER). However, there are still challenges in improving the HER activities of the heterostructures to achieve efficient hydrogen production. Here, nitrogen-decorated dual transition metal sulphide heterostructures (N-NiS/MoS2) were constructed with an enhanced HER performance in alkaline electrolytes. These novel N-NiS/MoS2 heterostructures exhibited a low overpotential of 71 mV (10 mA cm-2), small Tafel slope of 79 mV dec-1 and favorable stability. In particular, the experimental and theoretical calculation results consistently demonstrated that the introduction of nitrogen can effectively tune the electronic structure of the heterostructures. Furthermore, the synergistic effect between dual-active components N-NiS and N-MoS2 in the N-NiS/MoS2 heterostructures effectively promoted water dissociation and hydrogen formation, leading to remarkable increase in the HER performance in an alkaline medium. This work provides a valuable avenue for the rational modulation of the electronic structure of heterostructures by hetero-atoms for highly efficient HER catalysts.

5.
Nanoscale ; 11(16): 7959-7966, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30968074

RESUMO

Water splitting has long been considered as a promising chemical reaction that can produce clean hydrogen fuel to relieve the energy crisis and environmental pollution. Herein, we report that Co0.75Ni0.25Se/NF formed by two-step growth of metallic cobalt-nickel selenide nanorods on porous nickel foam was used as a bifunctional electrocatalyst. Ni foam serves as a slow-releasing nickel source together with a Co source to form a special proportional cobalt-nickel selenide. Due to its unique rough nanostructure, bimetallic cooperative effects and intrinsic metallic character, the obtained Co0.75Ni0.25Se/NF electrode exhibits a low overpotential of 269 mV (50 mA cm-2) for the oxygen evolution reaction and an overpotential of 106 mV (10 mA cm-2) for the hydrogen evolution reaction. Furthermore, this bifunctional electrocatalyst requires a cell voltage of 1.60 V to achieve a current density of 10 mA cm-2. Besides, based on theoretical calculation, it is further shown that the synergy between Co and Ni elements is beneficial for improving the internal structure of the catalyst, resulting in a high electrical conductivity, and low HER Gibbs free-energy and water adsorption energy. The present results indicate that Co0.75Ni0.25Se/NF exhibits advanced electrocatalytic activity for overall water splitting. This work offers an appropriate methodology and theoretical guidance to synthesize a bimetal-selenide electrocatalyst for water splitting.

6.
ChemistryOpen ; 4(3): 274-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26246988

RESUMO

Uniformly sized and shape-controlled nanoparticles are important due to their applications in catalysis, electrochemistry, ion exchange, molecular adsorption, and electronics. Several ferric phosphate hydroxide (Fe4(OH)3(PO4)3) microstructures were successfully prepared under hydrothermal conditions. Using controlled variations in the reaction conditions, such as reaction time, temperature, and amount of hexadecyltrimethylammonium bromide (CTAB), the crystals can be grown as almost perfect hyperbranched microcrystals at 180 °C (without CTAB) or relatively monodisperse particles at 220 °C (with CTAB). The large hyperbranched structure of Fe4(OH)3(PO4)3 with a size of ∼19 µm forms with the "fractal growth rule" and shows many branches. More importantly, the magnetic properties of these materials are directly correlated to their size and micro/nanostructure morphology. Interestingly, the blocking temperature (T B) shows a dependence on size and shape, and a smaller size resulted in a lower T B. These crystals are good examples that prove that physical and chemical properties of nano/microstructured materials are related to their structures, and the precise control of the morphology of such functional materials could allow for the control of their performance.

7.
Sci Rep ; 4: 5687, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25023373

RESUMO

Co3V2O8 thin nanoplates are firstly described as a kind of electrode material for supercapacitors. More importantly, from electrochemical measurements, the obtained Co3V2O8 nanoplate electrode shows a good specific capacitance (0.5 A g(-1), 739 F g(-1)) and cycling stability (704 F g(-1) retained after 2000 cycles). This study essentially offers a new kind of metal vanadium oxides as electrochemical active material for the development of supercapacitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...